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Abstract

Because of its wide applicability in various disciplines, blind source separation
(BSS), has been an active area of research. For a given dataset, BSS provides
useful decompositions under minimum assumptions typically by making use
of statistical properties—types of diversity—of the data. Two popular types
of diversity that have proven useful for many applications are statistical inde-
pendence and sparsity. Although many methods have been proposed for the
solution of the BSS problem that take either the statistical independence or
the sparsity of the data into account, there is no unified method that can take
into account both types of diversity simultaneously. In this work, we provide a
mathematical framework that enables direct control over the influence of these
two types of diversity and apply the proposed framework to the development of
an effective ICA algorithm that can jointly exploit independence and sparsity.
In addition, due to its importance in biomedical applications, we propose a new
model reproducibility framework for the evaluation of the proposed algorithm.
Using simulated functional magnetic resonance imaging (fMRI) data, we study
the trade-offs between the use of sparsity versus independence in terms of the
separation accuracy and reproducibility of the algorithm and provide guidance
on how to balance these two objectives in real world applications where the
ground truth is not available.
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1. Introduction

Blind source separation (BSS) is an active area of research in statistical sig-
nal processing due to its numerous applications, including, analysis of medical
imaging data, wireless communications, and image processing. The objective of
BSS methods is to decompose a set observations into the product of a mixing
matrix and a matrix of latent sources. However, without the exploitation of any
prior knowledge about the data, most typically its statistical properties—types
of diversity—the matrix factorization problem is ill-posed. Two of the most
popular forms of diversity that have proven useful in many practical applica-
tions and enable unique solutions up to scaling and permutation ambiguities are
independence [1, 2, 3, 4, 5, 6, 7, 8] and sparsity [9, 10, 11, 12, 9].

A powerful method that solely relies on the independence of the sources is
independent component analysis (ICA) [1, 2]. ICA provides a unique decompo-
sition such that the sources are statistically independent subject to only scaling
and permutation ambiguities. In contrast, methods such as dictionary learning
(DL) [9] and sparse component analysis (SCA) [13, 14], take the sparsity of
the sources directly into account, yielding decompositions where the estimated
components are as sparse as possible, subject to the same permutation and scal-
ing ambiguities as ICA, however with uniqueness guarantees only under specific
conditions [9)].

Though all of the above methods work well when their underlying assump-
tions are satisfied, neither of the methods exploit both independence and spar-
sity under a unified framework. In order to take advantage of these two forms
of diversity, jointly, many ad hoc methods have been proposed, such as by se-
lecting a density model that favors sparse distributions in ICA as noted in [1]
or by using sparsity transformations following ICA [15]. Although selecting the
source distribution would allow the ICA model to enjoy the desirable large sam-
ple properties of the maximum likelihood (ML) formulation [1, 2], the model
would be limited to a specific type of sparse distribution [1]. Additionally, spar-
sity transformations are an indirect way of imposing sparsity and do not allow
a direct way of controlling independence versus sparsity.

In this work, we present a mathematical framework that enables taking both
independence and sparsity into account in an efficient manner. We incorporate
sparsity through the use of a decoupled ICA cost function, penalized by an
0! regularization term, thus, enabling a direct exploitation of sparsity for each
source individually. We use ICA by entropy bound minimization (ICA-EBM)
[16], a flexible yet parameter—free algorithm that effectively maximizes indepen-
dence, as the underlying ICA algorithm for demonstrating the application of the
proposed framework. The new algorithm we develop, the Sparsel CA-EBM al-
gorithm, inherits all the advantages of ICA-EBM, namely its flexibility, though
with enhanced performance due to the exploitation of sparsity and enables di-
rect control over the degree to which independence and sparsity are emphasized.
Although, estimation accuracy is an effective metric to evaluate the separation
power of a BSS algorithm, in many applications such as the analysis of fMRI
data, model reproducibility is an important performance metric. Its importance
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derives from its ability to reveal how consistently an algorithm can produce simi-
lar estimated sources across different sets of data that are supposed to have come
from the same distribution, such as different scans of the same subject. Thus,
we propose a new model reproducibility framework to evaluate the consistency
of Sparsel CA-EBM, and using simulated fMRI data, we study the impact of the
regularization parameters on the reproducibility of the results as well as on the
estimation accuracy. This enables us to understand the trade-off between those
two objectives in the ICA optimization framework and provides a guideline for
parameter selection when ground truth is not available.

The remainder of this paper is organized as follows. In Section 2, we provide
a brief background on the relevant BSS methods, ICA, SCA, and DL. Section
3, provides the mathematical development of SparselCA-EBM as well as the
pseudo-code of the main part of the proposed algorithm. In Section 4, we
describe the data generation as well as the evaluation metrics. In Section 5,
we present the experimental results for SparselCA-EBM. The conclusions and
future research directions are presented in Section 6.

2. Mathematical Background

For a given observation matrix X € RM*V the noiseless BSS generative
model is given by
X =AS", (1)

where A € RM*N s the mixing matrix and S € RV*¥ is the matrix that
contains the source signals. The matrix decomposition in (1) is an ill-posed
problem, since for any invertible matrix T € R¥*Y it always holds that

X =AS" = (AT)(T!ST). (2)

However, by the exploitation of different types of diversity, we can achieve unique
decompositions up to only scaling and permutation ambiguities. Two types of
diversity that have been used in many applications are statistical independence
and sparsity.

2.1. Independent Component Analysis

One of the most widely used methods for solving the BSS problem (1) is ICA
and its basic assumption is that the source signals are statistically independent.
Therefore, by rewriting (1) using the random vector notation, we have

x(v) = As(v), v=1,...,V, (3)

where v is the sample index, s(v) € RY are the unknown source signals, and
x(v) € RM are the mixtures. A common case in many applications is the
overdetermined one (M > N), which can be reduced to the case where M = N
using dimensionality reduction following principal component analysis (PCA).
Since the sources s, (v), 1 <n < N in s(v) = [s1(v),...,sn(v)]T are assumed
to be statistically independent, the goal is to estimate a demixing matrix W &€



70

75

RNXN to yield maximally independent source estimates y(v) = Wx(v). Due to
its large sample size optimality properties, the maximum likelihood (ML) can
serve as the objective function for ICA and is given by

1 vV N
LOW) = 2 373 logp(w] x(v) + log | det(W)|

v=1n=1

N
~F {Z logp(wlx)} + log | det(W)], (4)

n=1

where p(w, x) is the probability density function (PDF) of the estimated ran-
dom variable y,, = w,x. The approximation in (4) is obtained by the mean
ergodic theorem under the assumption that the samples are independent and
identical distributed (i.i.d). It has been shown that maximization of (4) is
equivalent to the minimization of the mutual information (MI), as long as the
assumed model PDF matches the true latent source PDF [1]. Mutual informa-
tion, which is defined as the Kullback-Leibler (KL)-distance between the joint
source density and the product of the marginal estimated source densities, is
given by

iea(W) = 5 { < og oo B0

N
E { > logps, (yn)} + E{logps(y)}

n=1

H(yn) - H(y)

I
M=

1

3
Il

I
M=

H{(yn) — log|det(W)| — H(x), (5)

n=1

where the terms H(y,), H(x), and H(y) are the (differential) entropy of the
source estimates, the mixtures, and the estimated random vector y respectively.
Note that the term H(x) is independent of W and can be treated as a constant
during the optimization procedure. For a more detailed discussion of ICA and
different types of ICA algorithms that lie under the maximum likelihood um-
brella we refer the reader to [1, 17].

2.2. Dictionary Learning and Sparse Component Analysis

Though ICA has proven useful in many practical applications, generally
independence is not the only form of diversity inherent to the sources in (1). One
of the most popular forms of diversity to exploit is sparsity and BSS methods
that exploit solely the sparsity of the sources include DL and SCA.

By assuming that the observations can be expressed as sparse combinations
of a dictionary ®, DL seeks to estimate both the dictionary and the collection of
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weight vectors, S, generally through an alternating estimation procedure. The
cost for this task is given by

. B 2
min [[X — @S| + AlIS]|1.1. (6)

where ||S]]1,1 = Zﬁ1 évzl |si;| and A is the regularization parameter. Different
DL algorithms include those based on probabilistic learning methods, learning
methods based on clustering, among others [9]. For a more detailed review of
DL and its applications, we refer the reader to [9, 18].

A related method to DL that exploits solely sparsity is SCA. If & € RExV
denotes a dictionary matrix, whose rows are called the atoms, then at the first
step of SCA, ® is applied to the mixture matrix X, to obtain C, € RF*K,
In such a case, the column vectors Cx(k) k = 1,... K, form the scatter plot
{Cx(k)}E_,. If the dictionary has been selected properly, i.e., has as sparse a
representation of the data as possible, the elements of {Cx(k)}X_ | are almost
aligned with the columns of the mixing matrix. In the second step, the mixing
matrix A needs to be estimated by {Cx(k)}< ;. Thus, under the assumption
that at most one source contributes to each point of the scatter plot, clustering
techniques can be used to estimate A. The third step consists of the estimation
of the source representations that can be denoted as Cg € RP*X due to the
sparsifying transformation, Cx = X®7T, that has been applied to the mixture
matrix at the first step of SCA. Each column of Cg can be estimated through
the minimization problem

Cs(k) =arg min |||, (7)
c|Cx(k)=Ac

where c is the vector that needs to be minimized such as Cx(k) = Ac and the
solution of the minimization problem gives an estimate of the kth column of
Cs. The final step consists of reconstructing the sources by y = Cs®, when the
initial dictionary matrix is orthogonal. For a more detailed discussion of SCA,
we refer the reader to [13].

Although ICA, DL, and SCA have their own justifications in terms of the di-
versity that they exploit, the differences among these methods do not facilitate
transformation from one method to another, thus making it difficult to balance
these two different forms of diversity, independence and sparsity. Specifically,
ICA is based on the assumption that the sources are statistically independent,
while DL or SCA assumes that the sources are sparse. The main contribution of
our work is to develop a new framework that enables a translation between the
two objectives of sparsity and independence and exploration of the trade-offs
between emphasizing one over the other. We apply this framework to the devel-
opment of an effective ICA algorithm that can jointly exploit both independence
and sparsity.
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3. Sparse Independent Component Analysis

3.1. Cost Function

Classically, sparsity is measured using the ¢° norm, and is defined as the
number of non-zero coefficients from a vector u € RV

[lullo = #{uw; #0;i=1,...V}. (8)

Although the incorporation of (8) into the ICA framework is the most direct
way to impose sparsity on the ICA cost function, the £° norm is computationally
intractable. On the other hand, the ¢! norm, defined as the sum of the absolute
values of a vector’s coefficients, has served as a computationally efficient spar-
sity regularizer see e.g., [19, 20, 21]. For this reason, we propose a direct way
to promote sparsity into the ICA model through the addition of an ¢! regular-
ization term to the ICA cost function. The addition of this term is expected
to improve separation performance beyond what is achieved solely through the
maximization of independence when the underlying sources are truly sparse.

However, it is difficult to balance the contribution of sparsity for each of the
individual sources while optimizing (5), due to the log | det(W)| term. This issue
can be avoided by expressing (5) and its gradient as a sequence of equations,
where each equation is written with respect to each row w,, n =1,..., N of
the demixing matrix W. Therefore, by using this decoupling approach [16, 22],
the sequence of MI cost functions is given by

JICA(Wn) = H(yn) - log |h7—lrwn‘ - Cnv n= 17 s 7N7 (9)

where h,, is a unit vector that is perpendicular to all row vectors of W except
w,, and each C,, is a constant that contains all the terms that are independent
of w,,. Therefore, using (9), the proposed sequence of cost functions that take
both independence and sparsity of each individual source into account is given
by

J(wp) = Jrea(wpn) + Anf(yn), n=1,...,N, (10)
where f(yn) = ||yn||1 is the regularization term and A,, is the sparsity parameter
forn =1,... N. Note, that with a slight abuse of notation in (10), we treat y,, as
a vector where each coordinate corresponds to a sample drawn from the random
variable y,. The ¢! norm is a non-differentiable function, so it is replaced by
the the sum of multi-quadratic functions [23], given by

1%
. 2
flyn) = €£}§0; VU2, +en, (11)

where €, is the smoothing parameter.
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3.2. Algorithmic Development

ICA by entropy bound minimization (ICA-EBM) is a flexible and parameter-
free algorithm that can maximize independence in an efficient manner through
the use of four measuring functions matching: unimodal or bimodal, symmet-
ric or skewed, heavy-tailed or not heavy-tailed distributions [16]. It is due to
this flexibility and ability to effectively maximize independence that ICA-EBM
serves as the algorithm for the direct integration of (10).

The gradient of (10) with respect to (w.r.t) w,, is given by

0 _ OJrca(wy) . - Yn.,
J(wy) = —F—=+ X\, Jllglo Z (12)

— X,
Bwn aWn 1 /y%v +€p

8JICA(VVn):iEw alng(yn)x B h,

and p(y,), can be adaptively determined for each estimated source indepen-
dently. We refer to this new ICA algorithm as SparselCA-EBM. For better
convergence properties, we follow the technique in [16] and define the domain
of our cost function to be the unit sphere in RY. By using the projection trans-
formation onto the tangent hyperplane of the unit sphere at the point w,,, the
normalized gradient of our cost function is given by

oJ(wy,)

u, = Pn(“’n)Wv (13)

where

where P, (w,) =1 —w,w! and ||w,|| = 1.

In order to achieve fast convergence, SparselCA-EBM has been implemented
using three stages. First, FastICA [24] is performed on the mixtures, generating
an initial estimate of the demixing matrix W. This estimate is further refined
through the performance of orthogonal ICA using (10). The final stage consists
of the application of non-orthogonal ICA using the estimated W obtained from
the previous stage. The pseudo-code description of the non-orthogonal ICA
stage is presented in Algorithm 1.

The term J(W) introduced in Algorithm 1, is given by

N N
J(W) =" H(y) —log|det(W)| + > Aullynll1. (14)

and is computed after the estimation of each w,, for each ICA iteration. To cal-

culate the vector h,,, we introduce the matrix W,, = [wy,...,W,_1,Wp41,..., Wn]

Then, h,, is obtained as

TO-1
r-W,_ Q. " W,r

h, = ,
e - WIQu W, |

(15)

where r is an arbitrary vector of size IV x 1 that is not orthogonal to w,, and
Qn = WnWI
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Algorithm 1 SparselCA-EBM
1: Input: X € RV Winic, A, €n
2: for n = 1:N do
3 Compute h,,, orthogonal to w; for all i # n
4 Calculate the derivative % using (12)
5: Project the gradient onto the unit sphere using (13)
6
7
8

(Wn)ncw — (Wn)old —yu,
. end
: Repeat steps 2 through 7 until convergence in J(W) or until the maximum

number of iterations is exceeded
9: OQutput: W

The proposed SparselCA-EBM algorithm not only provides flexible density
matching but also yields solutions with variable levels of sparsity, through man-
ual selection of A\, and ¢,.

4. Evaluation Methods and Data Generation

For a BSS algorithm to be useful in real world applications, it must be able
to efficiently extract the latent sources and do so consistently. Consequently,
motivated by [25], to evaluate our proposed model, we consider two different
metrics of performance. The first is in terms of its separation power, i.e., its
ability to accurately extract the latent sources, and the second is in terms of
its reproducibility, i.e., the consistency of the solutions across different datasets
and runs. Such metrics are especially important in applications such as the
analysis of fMRI data, since if sources are extracted incorrectly, the conclusion
may be flawed, for instance leading to improper identification of biomarkers,
i.e., spatial patterns, of disease. Generally when using ICA on fMRI data,
the estimated components tend to have sparse distributions [26], motivating
the study of the synergy between independence and sparsity. Therefore, using
these two measures of performance, we explore the trade-offs between the use
of sparsity versus independence, through fMRI data, and provide a guidance on
how to balance these two objectives in real world applications where the ground
truth is not available.

This investigation is performed through the generation of simulated fMRI
data using SimTB [27], which enables flexible generation of fMRI-like datasets
under a model of spatio-temporal separability. To study the effect of inde-
pendence against that of sparsity, we generate 10 datasets, each representing a
different subject with 20 sources, for three different scenarios each with different
levels of noise. The three scenarios are shown in Fig. 1 and consist of the cases
where all sources are very sparse with little to no spatial overlap, a mixture of
very sparse and less sparse sources again with little to no spatial overlap, and
very sparse as well as less sparse sources with an increased amount of spatial
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overlap. The sparsity and the degree of overlap of the original sources is con-
trolled by adjusting the SimTB parameter value that controls the “spread” of
the sources. Note that when we decrease the spread of each individual source the
sparsity of this particular source is decreased. This comes from the definition of
a sparse distribution which is one for which most of the energy is contained in
only a few of the coefficients [28]. The additive noise is Rician distributed and
has energy specified by the contrast-to-noise ratio (CNR) defined as the ratio
of the temporal standard deviation of the true signal divided by the temporal
standard deviation of the noise [27]. Each source is a 100 x 100 image and
the length of the experiment is 260 samples, meaning that simulated X is of
dimension 260 x 10%.

)

()

Figure 1: Simulated fMRI-like components for the three different scenarios. Note that each
color indicates a different component. The scenarios are (a) all sources are very sparse with
no spatial overlap, (b) a mixture of very sparse and less sparse sources and no spatial overlap,
(c) very sparse as well as less sparse sources with a certain degree of spatial overlap.

To verify the sparse nature of the sources for each of the three different
scenarios, we measure the sparsity level of each source across all subjects, using
the Gini index, defined as [28]

O —v
S(u)=1-2 (V v+1/2)’ (16)

v=1

where u) < 4@ < ... < uV) are the ordered coordinates of the vector u € RV .
Note from (16) that the Gini index is normalized, with 1 corresponding to
very sparse sources while 0 to dense sources. The average Gini indices for the
20 sources and for the three different scenarios are summarized in Fig. 2 (a).
Additionally, we compute the average correlation across subjects and display
the distribution of the values in Fig. 2 (b). Note that the mean and standard
deviation of the pairwise source correlations are: 0.044 £ 0.034,0.022 £ 0.031,
and 0.03 £ 0.043, respectively.

4.1. Balancing Independence and Sparsity
Since the ground truth is available for our simulated sources, we evaluate
the performance of SparselCA-EBM in terms of its separation power, using the
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Figure 2: (a) Average Gini index (b) distribution of the correlation values of the 20 latent
sources for the three different scenarios. The Gini Index is normalized, with 1 corresponding
to very sparse sources while 0 to dense sources.

average absolute value of the correlation between the true and the estimated
sources. Thus, for the first part of our study, we evaluate the correlation co-
efficient between the true and the estimated spatial maps as a function of A,
and €,. Since A, controls the degree to which sparsity is emphasized over in-
dependence in Sparsel CA-EBM, we would like to visualize the behavior of the
algorithm when we relax the independence assumption for each of the three
groups and for different levels of noise.

The first step in processing the fMRI-like data consists of the application
of PCA to each dataset, individually. Since 20 sources are generated for each
dataset, the dimension of each dataset is temporally reduced to 20. After dimen-
sion reduction, we apply SparselCA-EBM to each dataset. After SparselCA-
EBM has been applied to each subject’s data, we pair the extracted components
with the true latent sources. In the case where more than one estimated com-
ponent is paired with a single true source, we use the Bertsekas algorithm [29],
an iterative method that maximizes a given cost in a bipartite graph, to find
the best assignment.

4.2. Model Reproducibility

Since besides estimation accuracy it is important for a BSS algorithm to
consistently produce similar results, we also study the reproducibility of the
Sparsel CA-EBM as a function of the sparsity parameter \,, and the smoothing
parameter ¢,. Motivated by the the nonparametric, prediction, activation, in-
fluence, reproducibility, resampling (NPAIRS) framework in neuroimaging [25],
we split the original dataset into two, and perform separate analyses on each of
the sub-datasets and study the similarity of the two sets of resulting separated
sources. Since selecting certain rows of X is equivalent to sub-sampling the
corresponding rows of A multiplied by the source matrix S, the similarity of

10
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the estimated sources is a good measure of the reproducibility of the proposed
algorithm. A graphical illustration of this approach is presented in Fig. 3.

For this analysis, we split the mixture matrix X, defined as the collection of
all realizations of x(v), into two submatrices by selecting every other row of X
creating X; and Xa, for each of the subjects. We apply PCA to each X; and Xy
for each subject and reduce their dimension to 20. After dimension reduction,
we apply Sparsel CA-EBM to each reduced dataset. After SparselCA-EBM has
been applied to the reduced submatrices, we pair the extracted components from
the first submatrix with the extracted components from the second submatrix
for each subject. In the case of multiple assignments, we again use the Bertsekas
algorithm to determine the optimal assignment. We measure how close the pairs
of estimated components are using the average absolute value of the correlation
across subjects.

- [N

——

= =

—
X A, S

- |[ 1 L ]
X, A, S,

Figure 3: Visualization of subsampling method used to split the observation matrix in order
to evaluate the reproducibility of the model. Note that under this reproducibility framework
S; ¢Sy, =S.

5. Experimental Results

Fig. 4 displays the average spatial correlation between the true and the
estimated components as a function of the two key parameters for SparselCA-
EBM, the regularization parameter \,, and the smoothing parameter ¢,. Fig. 5
displays the average spatial correlation between the estimated components gen-
erated when applying SparselCA-EBM on the first half and the other half of
the data as a function of \,, and ¢,. For both figures the first column shows the
results where data have been generated with no noise and the second column
when noise has CNR = 1. For each noise level, we show the behavior and the
reproducibility of the algorithm for the three different scenarios as described in

11
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the previous section. The hardware used in the computational studies is part
of the UMBC High Performance Computing Facility (HPCF), for more infor-
mation see hpcf.umbce.edu. Note that since the effectiveness of a BSS algorithm
depends on both its accuracy and its consistency, in the two sets of figures that
we present, we seek to find values of A\, and €, for which we obtain high source
reconstruction accuracy as well as high reproducibility.

From Fig. 4(a) and (d), we observe that when the original sources do not have
significant overlaps and all of them are characterized as very sparse, high values
of A\, and €, produce higher average spatial correlation values, with the gain
decreasing when noise level increases. This result shows that, in the case of truly
sparse and independent sources, promoting sparsity within an ICA framework
improves performance, since we effectively exploit another form of diversity, i.e.,
property of the sources. In Fig. 4(b), we observe that, when some of the sources
are sparse and some are less sparse, for high values of €,, SparselCA-EBM
with sparsity enforced, i.e., high values of \,,, provides better results, than with
small values of A, since only a third of the total sources are less sparse, thus
the performance is dominated by the extraction of the sources that are sparse.
From Fig. 4(e), SparselCA-EBM with only independence enforced, i.e., small
values of \,, and Sparsel CA-EBM with sparsity enforced and high values of
€, provide similar separation performance, since the additive noise destroys the
sparse nature of the data. Finally from Fig. 4(c) and (f), SparselCA-EBM with
high values of A\, and €, provides similar results to Sparsel CA-EBM with low
values of \,,.

From Fig. 5(a) and (d), we observe that when the original sources do not
overlap and all of them are characterized as very sparse, high values of \,, and
for almost all values of €, the results are highly reproducible. Thus, for these
cases, Sparsel CA-EBM produces both accurate and consistent results for large
values of A\, and €,. A similar trend can be observed in Fig. 5(b), where some
of the sources are very sparse and some are less sparse. Fig. 5(e), for all values
of A\, and ¢,, SparselCA-EBM is becoming always consistent. Fig. 5(c), shows
that, for some intermediate values of €,, we have high reproducibility. Finally, in
Fig. 5(f), SparseICA-EBM shows nearly identical results except for high values
of \,, and ¢,.

Based on Figs. 4 and 5, we can draw several interesting conclusions regarding
the behavior of SparseICA-EBM, also can note few points for the selection of its
parameters when we are working with real fMRI data. Since our goal is to have
both high performance and high reproducibility, we observe that for the first and
second scenarios where component overlaps are limited, sufficiently high values
of A\, i.e., in the interval (1072,10%), as well as sufficiently high values of ¢,,
i.e., in the interval (0.5, 10), will produce sparse and smooth sources consistently.
Moreover, for scenario 1, SparselCA-EBM with very small \,, is robust to noise.
For the third scenario and when the values of )\, are small, SparselCA-EBM
has relatively high performance. Therefore, for real world applications where all
or a majority of sources can be assumed to be sparse high values of A\,, and ¢,
are expected to provide reasonable results, consistently. However for the case
where overlaps are likely, by emphasizing both independence and sparsity in the

12
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optimization procedure will produce better overall performance.

An additional point worth noting, is that from Fig. 5(a), we observe a sig-
nificant drop in reproducibility for \,, = 1073. The reason for this is likely due
to the fact that the Sparsel CA-EBM cost function consists of an independence
term that is described by the negative of the ICA maximum likelihood function
and a sparsity term that is described by the ¢! norm, the second term in the cost
function. Since the contribution of sparsity is weighted by the parameter A,, and
the optimal solutions of the two terms are not necessarily the same, changing
the value of A, affects the overall solution space each time SpacelCA-EBM is
applied to X; and Xs. Numerical experiments have shown that for this data
the two terms contribute almost equally in the optimization procedure when
An = 1073, This situation expands the solution space, resulting in more local
optima, and thus, when Spacel CA-EBM is applied to X; and X5 separately, it
yields pairs of estimated components that correlate less with each other. The
performance drop observed in Fig. 5(a) starts to disappear in the rest of the
figures for which noise is introduced to the data, since noise destroys sparsity,
or for scenarios where we manually reduce the sparsity of the original sources.
Since in these two cases sparsity is insufficient to fully extract the sources, the
solution space of the second term in the cost function is close to being flat.
This results in a joint cost surface with fewer local minima and therefore better
correlation between the two sets of estimated components.

6. Conclusion

Methods that exploit sparsity and independence have proven useful in many
applications. This motivates the development of a method that can effectively
take into account both types of diversity. In this work, we propose a new
mathematical framework that enables direct control over the influence that in-
dependence and sparsity have on the result and use this framework to generate
a powerful algorithm that takes both sparsity and independence into account.
We explore the trade-offs between emphasizing these two objectives for differ-
ent scenarios of simulated fMRI data and provide a guideline on the parameter
selection for fMRI analysis when the ground truth is not available. Our results
indicate that careful selection of the regularization parameters under certain
scenarios will increase the quality of the final extracted sources enabling mean-
ingful interpretations for fMRI analysis.

Our work motivates several interesting directions of further research, such
as the development of automated techniques for parameter selection when the
ground truth is not available. Additionally, the development of a technique that
adaptively updates A, and €, for each source would significantly increase the
separation performance and improve the quality of the final extracted sources,
especially when sources have different levels of sparsity. Finally, the study of
the effect on the algorithm using different approximations of the ¢! norm would
be of high interest.
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Figure 4: Spatial correlation of the true and the estimated sources as a function of A\, and €,
for different CNR values: (a)-(c) is the noiseless case and (d)-(f) have a CNR of 1. Plots (a)
and (d) are from scenario 1, all sparse sources. Plots (b) and (e) are from scenario 2, some
sparse and some less sparse sources with no overlap. Plots (c) and (f) are from scenario 3,
some sparse sources and some less sparse sources with some degree of overlap. The results are
the average of 128 runs.
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Figure 5: Spatial correlation of the estimated components generated when applying
SparselCA-EBM on the two halves of the data as a function of A, and €, for different CNR
values: (a)-(c) is the noiseless case and (d)-(f) have a CNR of 1. Plots (a) and (d) are from
scenario 1, all sparse sources. Plots (b) and (e) are from scenario 2, some sparse and some
less sparse sources with no overlap. Plots (c) and (f) are from scenario 3, some sparse sources
and some less sparse sources with some degree of overlap. The results are the average of 64
runs.
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